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Abstract 25 

Fine-scale variation of vegetation structure in dryland systems, such as the Great Basin in the 26 

western US, is critical to understanding ecosystem responses to changing land-use conditions. 27 

High resolution airborne hyperspectral (HyMap) and LiDAR datasets acquired across 28 

independent collection sites can reduce uncertainty in predictive ecosystem modeling and provide 29 

a basis for regional upscaling to satellite observations of structural metrics such as cover and 30 

height. In the first part of our study, we combined ground reference and airborne data collected at 31 

three sagebrush-steppe locations and used the statistical data mining tool random forests to 32 

identify remote sensing variables most relevant to estimating shrub cover. In the second part of 33 

our study, we hypothesized that vegetation indices derived from hyperspectral satellite 34 

observations would not only reliably predict shrub cover but also be relatable to shrub height; 35 

thereby augmenting the collection of vertical structure estimates from future satellite platforms 36 

such as ICESAT-2. To test this hypothesis, we simulated HyspIRI observations to derive 37 

variables to relate to LiDAR-based estimates of shrub cover and height. We generated the same 38 

hyperspectral variables as in the first part of this study but at coarser resolution (60m) and we 39 

again used random forests to model shrub cover and height and identify predictors of greatest 40 

importance. Overall, combining LiDAR and HyMap datasets at the airborne scale improved 41 

shrub cover model results (r
2 

= 0.58) compared to LiDAR alone (r
2 

= 0.49). Primary shrub cover 42 

variables of importance were HIQR (the interquartile range of height of all LiDAR vegetation 43 

returns), HMAD (Median Absolute Deviation from median height of all LiDAR vegetation returns), 44 

a narrowband index sensitive to anthocyanins, the ratio of LiDAR vegetation returns to total 45 

returns, and a red to green ratio. In addition, HyspIRI-simulated narrowband vegetation indices 46 

were relatable to LiDAR-derived shrub cover and height variables (r
2 

ranging from 0.63 to 0.71) 47 
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with relatively low root mean square error.  48 

 49 
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1. Introduction 52 

Sagebrush (Artemisia spp.) communities once covered approximately 63 million hectares of 53 

rangeland in the western United States and Canada and represent the largest and one of the 54 

most threatened ecosystems in the temperate semi-desert ecoregion of North America 55 

(Anderson & Inouye, 2001; Homer et al., 2012). Sagebrush habitat provides food or cover for 56 

over 350 wildlife species including sage grouse (Knick & Connelly, 2009; Suring et al., 2005; 57 

Tilley et al., 2006). Like most vegetation, sagebrush cover and height characteristics vary 58 

across the landscape. Accurately mapping this variation is important for sage grouse habitat 59 

selection, which depends on percent canopy cover, visual cover and height; and for habitat 60 

modeling (e.g. Crawford et al., 2004; Krogh et al., 2002). Cover and height are also relevant to 61 

estimating fuel loads (e.g. Castedo-Dorado et al., 2012; Keane et al., 2002) and aboveground 62 

biomass (Mathieu et al., 2013), which are indicators of forage potential, species dominance 63 

and hydrologic function in semiarid systems. When coupled with canopy shape, sagebrush 64 

cover and height provide information about the spatial pattern of vegetation roughness, which 65 

directly affects aeolian sediment transport (Mueller et al., 2007; Okin, 2008) and may be 66 

relatable to aerodynamic roughness, a key parameter in energy balance models and 67 

evapotranspiration (Lee et al., 2012) and shrub patch dynamics (Schlesinger et al., 1990). Fine-68 

scale characterization of the variability in sagebrush height and cover is important to initialize 69 

terrestrial ecosystem models (e.g. Medvigy et al., 2009) to understand structural dynamics and 70 

provide regional estimates of carbon stock and fluxes under future climate change scenarios.  71 

Several studies have demonstrated the use of multispectral imagery (1 m to 56 m pixels) 72 

for monitoring categorical and continuous shrub cover change in sagebrush ecosystems (e.g., 73 

Ramsey et al., 2004; Sivanpallai et al., 2009; Stow et. al., 2008). However, multispectral and 74 
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hyperspectral studies designed to estimate vegetation cover in sagebrush are limited by multiple 75 

scattering, bright soil reflectance, penetrable canopies and spectrally indiscriminate targets 76 

(e.g., Laliberte et al., 2007; Mitchell & Glenn, 2009; Okin et al., 2001; Smith et al., 1990). 77 

Small-footprint, discrete return Light Detection and Ranging (LiDAR), or airborne laser 78 

scanning, is not limited by many of these spectral challenges; however, separating LiDAR 79 

returns in low-height, open canopy rangeland vegetation is difficult because the vegetation 80 

canopy returns are often close to ground returns.  Recent studies confirm the appropriateness of 81 

LiDAR for structural and biomass applications (Latifi et al., 2012; Swatantran et al., 2011; 82 

Zolkos et al., 2013), with hyperspectral data providing important canopy stress information 83 

(Swatantran et al., 2011) and minor improvements to the LiDAR models (e.g., Anderson et al., 84 

2008; Latifi et al., 2012; Mundt et al., 2006). While combining LiDAR-derived estimates of 85 

vegetation structure with hyperspectral information tends to result in slightly improved 86 

accuracy, new methods are needed to optimize these datasets; understand the relative tradeoffs 87 

and redundancies between the two sensors; identify uncertainties associated with upscaling; 88 

and develop composite products that can be iteratively assessed and refined in terms of 89 

prediction accuracy (Esteban et al., 2005).  90 

Furthermore, an improved understanding of the contribution of hyperspectral data in 91 

estimating vegetation structure will improve future applications of HyspIRI (Hyperspectral 92 

Infrared Imager) data, along with synergistic use of HypsIRI with other remote sensing data, 93 

such airborne hyperspectral and LiDAR, and ICESat-2’s Advanced Topographic Laser 94 

Altimeter ( ATLAS). HyspIRI is a future National Research Council (NRC) decadal survey 95 

mission from National Aeronautics and Space Administration (NASA) that is expected to 96 

be launched in the next decade (NRC, 2007). One of the instruments onboard HyspIRI is an 97 
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imaging spectrometer yielding 60 m spatial resolution data in 10 nm contiguous bands ranging 98 

from 380 nm - 2500 nm at an equatorial 19 day repeat cycle (NASA, 2014). The spectral 99 

range and bandwidth is similar to that of the Hyperion sensor on NASA’s EO-1 satellite. 100 

Hyperion can collect transect samples in narrow swaths at 30 m spatial resolution but suffers 101 

from cross-track calibration issues and is limited by low signal-to-noise (Pearlman et al., 2003). 102 

In contrast, HyspIRI is a global imager and the mission is primarily expected to contribute to our 103 

understanding of carbon and ecosystem processes by enabling global vegetation mapping at 104 

finer taxonomic levels and rapid detection of plant stresses. Recently, using simulated data, 105 

various studies have demonstrated the potential of HyspIRI in different applications such as 106 

vegetation mapping (Olsson & Morisette, 2014), estimation of fraction of photosynthetically 107 

active radiation and leaf water content (Zhang et al., 2012), and in other geoscience (Abrams 108 

et al., 2013; Kruse et al., 2011) and urban applications (Roberts et al., 2012). Similar studies on 109 

more complex shrubland ecosystems can provide insights into the potential of HyspIRI in 110 

estimating vegetation structural parameters such as cover and biomass. Airborne hyperspectral 111 

data obtained from NASA’s AVIRIS sensor (limited availability due to commissioning 112 

requirement) or commercial instruments such as HyMap (HyVista Co., Sydney, Australia) 113 

contain similar spectral coverage and can be relevant proxies to generate such simulations.  114 

This study analyzes and integrates HyMap and LiDAR data using a random forests approach 115 

(Breiman, 2001), which can be used to select (indirectly) important predictor variables and has 116 

been demonstrated to predict forest canopy structural measurements using LiDAR (Hudak et al., 117 

2008) and spectral/LiDAR combinations (Guo et al., 2011; Leutner et al, 2012). Ensemble 118 

learning approaches such as random forests are well-suited to handle “wide-datasets” such as the 119 

datasets analyzed in this study because they result in smaller prediction variance and bias and 120 
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better model performance compared to other approaches (e.g., Gislason et al., 2006; Mitchell et 121 

al., 2013; Pal, 2005; Rodriguez-Galiano, et al., 2012; Strobl et al., 2009). 122 

In the first part of this study we explore the relative contributions of high resolution (3 m 123 

pixels) airborne HyMap and discrete return, small footprint LiDAR data to the estimation of 124 

shrub cover using ground reference data sampled across three collection sites that span 125 

precipitation and elevation gradients in the Great Basin region of southern Idaho, USA (Olsoy et 126 

al., 2014). We also consider uncertainty associated with combining all three sites for analysis. 127 

In the second part of this study, we simulate HyspIRI imaging spectrometer data to assess the 128 

potential for satellite hyperspectral data to estimate shrub cover and height at the regional scale 129 

(60 m pixels; across all three sites) using LiDAR-only metrics as a pseudo validation dataset. 130 

Findings are designed to provide insight into the extent to which hyperspectral satellite 131 

observations can augment structure measurements in dryland systems where future laser altimetry 132 

satellite technologies may be sensitive to areas of low canopy cover.  133 

 134 

2. Methods 135 

2.1 Study Sites 136 

The study areas consist of three collection sites located across the sagebrush-steppe 137 

ecosystem in southern Idaho, USA (Figure 1): Department of Energy’s Idaho National Lab 138 

(INL), Hollister, and Reynolds Creek Experimental Watershed (RCEW). The INL study site is 139 

located in cold desert sagebrush-steppe along the eastern Snake River plain in an intermountain 140 

landscape. The study area and its vicinity are flat, with elevations in the study area ranging from 141 

approximately 1479 to 1496 m. Microtopographical fluctuations created by historical agricultural 142 

practices, namely archaic irrigation channels and associated side channels, are present in the 143 
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northeastern portion of the project area. The study site is dominated by Wyoming big sagebrush 144 

(Artemisia tridentata subsp. wyomingensis), while basin big sagebrush (Artemisia tridentata 145 

subsp. tridentata) occurs in association with depressional areas and drainage channels. Other 146 

species common to the study area include yellow rabbit brush (Chrysothamnus viscidiflorus), 147 

pricklypear cactus (Opuntia spp.) and crested wheatgrass (Agropyron cristatum).  148 

The Hollister site is located in the County of Twin Falls in the Snake River plain region of 149 

southern Idaho. The study area is sloped southwest to northeast, with elevations ranging from 150 

approximately 1551 m in the southern portion to approximately 1362 m in the northern portion of 151 

the site. The plant community is Wyoming Big Sagebrush (Artemesia tridentata ssp 152 

wyomingensis) of low-stature (generally < 50 cm, all < 1 m) (Fig. 2a) and a relatively high ratio 153 

of wood: leaves. Herbaceous cover includes Sandberg's bluegrass and squirreltail (Poa secunda 154 

and Elymus elemoides, respectively) as dominant understory bunchgrasses and moderate and 155 

patchy occurrence of cheatgrass, crested wheatgrass, and native forbs. Fire history records 156 

indicate minimal disturbance.  157 

The RCEW consists of approximately 239 km
2 

of land located in the Owyhee Mountains in 158 

southwestern Idaho, USA. Elevations in the watershed range from 1049 to 2245 m. Sagebrush 159 

and grassland communities are the dominant vegetation cover (Fig. 2b). Common shrub species 160 

include low sagebrush (Artemisia arbuscula Nutt.), big sagebrush (Artemisia tridentata Nutt. 161 

subsp. vaseyana [Rydb.] Beetle and subsp. wyomingensis) and bitter brush (Purshia tridentata 162 

[Pursh] DC), which typically grow up to 50 cm, 50–100 cm, and 60–185 cm in height, 163 

respectively.  164 

  165 
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 166 

Figure 1. Locations of three collection sites in southern Idaho, USA: (a) RCEW, (b) INL, and (c) 167 

Hollister. Shaded areas in the upper figure represent big sagebrush dominance across western US. Images 168 

in lower figures are Normalized Differential Vegetation Index (NDVI). Field reference plots are depicted 169 

as crosses. 170 
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    171 

(a)     (b) 172 

Figure 2. Photographs showing typical sagebrush (Artemisia tridentata) dominated areas at (a) 173 

Hollister and (b) RCEW study sites.  174 

 175 

2.2 Data Collection 176 

This cross-site shrub cover analysis was designed using ground reference and airborne HyMap 177 

and LiDAR data collected at three sagebrush-steppe sites in southern Idaho from 2007 to 2011 178 

(Table 1). While individual site research was previously conducted at all three sites, new 179 

reference plots were established in the field in fall 2011 to support the analysis presented in this 180 

paper. All HyMap and LiDAR datasets were independent acquisitions. Data collection, both 181 

ground and airborne, were limited to late summer and early fall, when grass has senesced and 182 

sagebrush is still photosynthetically active, in order to minimize the influence of grass on shrub 183 

cover estimates. 184 

  185 
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Table 1: Field and remote sensing data collection in the three study sites: INL, Hollister, and 186 

RCEW. 187 

Site Field Sampling Plots Hyperspectral (Hymap) LiDAR 

INL  Plots: n =20 (7 m X 7m) 

Date: 12 to14 Sept 2011 

Pixel resolution: 3.1 m 

Date: 14 Aug 2010 

Point Density: 10 pts m
-2 

Date: 05 Aug 2010 

Hollister Plots: n = 35 (10m X 10m) 

Date: 18 to 22 July 2011 & 

02 to 03 August 2011 

Pixel resolution: 2.1 m 

Date: 13 Aug 2010 

Point Density: 10 pts m
-2 

Date: 05 Aug 2010 

RCEW Plots: n =23 (10m X 10m) 

Date: 14 to 15 July, 2011; 

26 to 27 July 2011 & 01 to 

09 August 2011  

Pixel resolution: 3.0 m 

Date: 10 Aug 2010 

Point Density: 6 pts m
-2 

Date: 11 to 18 Nov 2007 

 188 

2.2.1 Field Data Collection 189 

Field sampling plots (7 m X 7 m or 10 m X 10 m) were used to collect shrub cover, and in most 190 

cases, shrub height measurements at the INL, Hollister and RCEW sites from July to November 191 

2011 (Table 1). For all sites, plot sampling locations were randomly generated. Once located, plot 192 

corners were marked and recorded using a positioning system with centimeter to submeter 193 

accuracy. Vegetation percent cover information was recorded along north-south transects spaced 194 

1 m apart at each plot using a point intercept method (Greig-Smith, 1983). Presence, vegetation 195 

type, and ground type were recorded at 1 m intervals along each transect. The following 196 

categories were recorded: live (green and woody) and dead (decaying) components of sagebrush, 197 

rabbit brush, bitter brush, other shrubs, grass, herbaceous, litter, rock, and bare ground. For the 198 

study herein, we utilize the percent vegetation cover measurements for shrub only. Percent shrub 199 

cover was estimated for each plot by calculating the total number of points intercepted by live 200 

and dead shrubs (sagebrush, rabbit brush, bitter brush, and other shrubs), then dividing this total 201 

by the total number of point intercept measurements. Shrub height was recorded as the highest 202 

height at each point intercept sampling location (e.g. every 1 m), then averaged for each plot. 203 
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2.2.2 Hyperspectral Image Acquisition 204 

HyMap imagery were collected over all three study sites (Fig. 1, Table 1) using the HyMap 205 

sensor (operated by HyVista, Inc.), which collects calibrated data in 126 near-contiguous spectral 206 

bands (450–2480 nm) that range in width from 15 nm in the visible and near infrared to 20 nm in 207 

the shortwave infrared (Cocks et al., 1989).  208 

2.2.3 LiDAR Data Acquisitions 209 

LiDAR data were acquired for all three study sites using a dual-mounted Leica ALS50 Phase II 210 

sensor mounted in a Cessna Caravan 208B operated by Watershed Sciences Inc., Corvallis, 211 

Oregon, USA (Table 1). The sensor operates at a wavelength pulse of 1064 nm and has a vertical 212 

discrimination height of 2.8 m, which resulted in only the first return from each pulse being 213 

recorded in our study plots. The data were acquired at a pulse rate of 83 kHz and with a 28° field 214 

of view during the 2007 and 2010 flights, and with an estimated pulse beam diameter of 0.20 m 215 

on the ground (at nadir) during the 2007 flights. Absolute vertical accuracy of the INL and 216 

Hollister datasets were assessed by the vendor using RTK GPS of ground control points (n = 217 

912) and was estimated to have a root mean square error (RMSE) of 0.03 m. Vertical accuracy of 218 

the dataset was assessed using ground elevation points (n = 52) collected with a RTK GPS over a 219 

flat gravel parking lot. The closest LiDAR point to each GPS location was determined and the 220 

elevations were compared to calculate RMSE, which resulted in an estimated vertical accuracy of 221 

0.10 m (Glenn et al., 2011). 222 

 223 

2.3 Hyperspectral and LiDAR Processing 224 

All data processing, unless otherwise stated, was performed using the Environment for 225 

Visualizing Images (Boulder, Colorado, USA). Radiometric and geometric corrections were 226 
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applied to the HyMap imagery using files provided by the vendor. Radiance values were 227 

converted to apparent reflectance using the HyCorr2 (HyMap Correction) absolute atmospheric 228 

correction modeling package, which was developed by the CSIRO (Commonwealth Scientific 229 

and Industrial Research Organization), Australia and is based on the Atmospheric Removal 230 

Program (ATREM; Gao & Goetz 1990; Gao et al., 1992). The absolute atmospheric corrections 231 

produced scaled surface reflectance values that account for scattering and absorption of solar 232 

radiation by the earth’s atmosphere. Such corrections are relevant to this study because they 233 

enable data recorded at the sensor to be directly compared to data recorded on the ground and to 234 

other remotely sensed images obtained under different atmospheric conditions (i.e., comparisons 235 

among HyMap images collected on different dates at multiple study sites). Surface reflectance 236 

measurements were collected for calibration tarps with 2.5%, 24%, and 56% reflectivity (Group 237 

VIII Technologies, Inc., Provo, UT, USA) at the time of overflights at the INL site using a 238 

FieldSpec Pro spectroradiometer (PANalytical, Boulder, CO, USA). These in situ surface 239 

reflectance values were compared to the atmospherically corrected reflectance values of 240 

corresponding pixels in the imagery. Comparisons indicated consistency in brightness across 241 

wavelengths but the data were not used to radiometrically correct the imagery. After converting 242 

images to surface reflectance in HyCorr2, illumination error remained visually apparent in the 243 

cross-track direction for all individual flightlines and was attributed to differences in viewing 244 

geometries and forward and backward scattering in areas of flightline overlap. Before 245 

mosaicking flightlines for each study area, a standard multiplicative cross-track correction 246 

offered in ENVI was applied to each flightline using a first polynomial fit for each band. The 247 

corrections effectively flattened reflectance data and compensated for brightness in the far 248 

western columns of the images.  249 
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LiDAR data were height filtered and processed into raster topographic and vegetation 250 

products in using the BCAL LiDAR Tools developed for semiarid vegetation 251 

(http://bcal.boisestate.edu/tools/lidar; Streutker & Glenn 2006). LiDAR data were height filtered 252 

using a 5 m canopy spacing, a 5 cm ground threshold, nearest neighbor interpolation, and 30 253 

iterations to separate ground and vegetation returns. LiDAR-based raster surfaces were generated 254 

at the 3 m pixel resolution (to match HyMap data) using the point cloud data across 3 m areas 255 

and included metrics such as percentage of ground returns, height interquartile range, canopy 256 

relief ratio, total point density, vegetation roughness, and local roughness (Table 2).  257 

Table 2. LiDAR variables used in analysis (calculations described are per pixel). 258 

LiDAR 

Variables 

Description 

Hrange Difference between maximum and minimum height of all vegetation returns  

Hmean Average height of all LiDAR vegetation returns  

HMAD Median Absolute Deviation (MAD) from median height of all LiDAR vegetation 

returns; MAD = 1.4826 x median(|height - median height|) 

HAAD Mean Absolute Deviation (AAD) from mean height of all LiDAR vegetation 

returns; AAD = mean(|height - mean height|) 

Hvar Variance of height of all LiDAR vegetation returns  

Hstdev Standard deviation of height of all LiDAR ground returns  

Hskew Skewness of height of all LiDAR vegetation returns  

Hkurt Kurtosis of height of all LiDAR vegetation returns 

HIQR Interquartile Range (IQR) of height of all LiDAR vegetation returns; IQR = Q75-

Q25, where Qx is xth percentile 

HCV Coefficient of variation of all LiDAR vegetation returns  

HnthP The 5th, 10th, 25th, 50th (median), 75th, 90th, and 95th percentiles of all LiDAR vegetation 

returns  
HCNR Canopy relief ratio (CNR) of height (H) of LiDAR vegetation returns 

CNR = ((Hmean – Hmin))/((Hmax – Hmin)) 

Htext Texture of height of LiDAR vegetation returns;  Texture = St. Dev. (Height > Ground 

Threshold and Height < Crown Threshold) 

Veg_Cov Percent ratio of LiDAR vegetation returns (greater than 0.15m height) and total 

returns  

Veg_Density Percent ratio of LiDAR vegetation returns and ground returns  

Density = Vegetation returns/ Ground returns *100 Nper_g_ret Percent ratio of LiDAR ground returns (≥ 0.15m height) and total returns  

Nreturn Total number of all LiDAR returns  

Nv_return Total number of all LiDAR returns greater than 0.15m height  

Ng_return Total number of all LiDAR returns less than 0.15m height  
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HyMap mosaics were poorly rectified and consequently co-registered to 3 m LiDAR raster 259 

data by specifying 10 coincident ground control points at each study site to warp the HyMap 260 

bands. In all cases a nearest neighbor 1
st 

degree polynomial resampling method was applied to 261 

the imagery, which resulted in RMSE values less than 1 pixel (3 m) for the co-registered datasets. 262 

Ground control points were selected in the rasters using a combination of true color and color 263 

infrared displays of the HyMap imagery and intensity and maximum vegetation height displays 264 

of the LiDAR raster products. 265 

Co-registered HyMap and LiDAR datasets were processed for the purpose of identifying 266 

variables relevant to estimating shrub cover. A majority of vegetation indices are calculated as 267 

ratios or normalized ratios of two or more bands used to calculate a single index that is sensitive 268 

to a biophysical or biochemical variable of interest. The mosaics were processed by calculating a 269 

series of vegetation indices related to greenness (broadband and narrowband), light use 270 

efficiency, senescent vegetation, and canopy water content (Table 3). These vegetation indices 271 

were considered given the potential for correlations between shrub cover and spectral calculations 272 

that enhance plant processes and biochemical content, as shown by various studies (e.g. 273 

Purevdorj et al., 1998). The LiDAR approach to estimating percent shrub cover was to sum the 274 

number of vegetation returns greater than 15 cm and divide by the total number of returns. The 275 

15 cm threshold is considered an optimal height for accounting for 1) relative and absolute 276 

vertical accuracy of the LiDAR system, 2) error associated with confusion between ground and 277 

vegetation returns in sagebrush steppe environments, and 3) noise associated with 278 

microtopographical relief (Mitchell et al., 2011; Smith et al., 2009; Spaete et al., 2011; Streutker 279 

et al., 2011). An examination of the distribution of LiDAR vegetation returns by canopy height 280 

across ground reference plots at the point cloud scale is consistent with the 15 cm threshold for 281 
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calculating shrub cover (Fig. 3). 282 

 283 

Figure 3: Distribution of LiDAR vegetation returns, binned by height, and spatially subset to the 284 

field reference plots at RCEW (n = 23), Hollister (n = 35), and INL (n =20) study sites.285 
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Table 3. Vegetation indices used in analysis. 286 

Index Formulation (R = reflectance, wavelengths in nm) Reference 

Normalized Difference Vegetation Index NDVI = (RNIR -RRed) / (RNIR+RRed) Rouse et al., (1973) 

Green Normalized Difference Vegetation 

Index 

GNDVI = (RNIR – RGREEN) / (RNIR +RGREEN) Gitelson & Merzylak (1996) 

Red Edge Normalized Vegetation Index NDVI705 = (R750 – R705) / (R750 + R705) Gitelson & Merzlyak (1994) 

Simple Ratio Index SRI = RNIR / RRED Tucker (1979) 

Enhanced Vegetation Index EVI = 2.5(RNIR-RRED)/(RNIR
6 RRED

-1.5 RBLUE) Huete et al. (1997) 

Red Edge Position Index REPI = Maximum value
*
 from 690 to 740 nm region  Curran et al. (1995) 

Normalized Difference Lignin Index NDLI = (log R1510 - log R1680) / (log R1510 + log R1680) Serrano et al. (2002) 

The Plant Senescence Reflectance Index PSRI = (R680 – R500) / R750 Merzlyak et al. (1999) 

Water Band Index WBI = R900 / R970  Penuelas et al. (1997) 

Normalized Difference Infrared Index NDII = (R819 - R1649) / (R819 + B1649) Hardisky et al. (1983) 

Moisture Stress Index MSI= R1599 / R819 Hunt & Rock (1989);  Ceccato et al. 

(2001) 

Vogelmann Red Edge Index 1 VOG1 = R740 / R720 Voggelman et al. (1993) 

Vogelmann Red Edge Index 2 VOG2 = (R734 - R747) / (R715 - R726)  Voggelman et al. (1993) 

Vogelmann Red Edge Index 3 VOG3 = (R734 - R747) / (R715 - R720) Voggelman et al. (1993) 

Red Green Ratio RG Ratio = RRED / RGREEN  Gamon & Surfus (1999) 

Photochemical Reflectance Index PRI = (R531 - R570) / (R531 + R570)  Gamon et al. (1997) 

Sum Green Index  

 

SGI = Normalized mean reflectance from 500 to 600 nm Lobell & Asner (2003) 

Carotenoid Reflectance Index 1 CRI1 = (1/R510) – (1/R550) Gitelson et al. (2002) 

Carotenoid Reflectance Index 2 CRI2 = (1/R510) – (1/R700) Gitelson et al. (2002) 

Anthocyanin Reflectance Index 1 ARI1= (1/R550) – (1/R700)] Gitelson et al. (2001) 

Anthocyanin Reflectance Index 2 ARI2 = (800*(1/R510) – (1/R700) Gitelson et al. (2001) 

*Derivative reflectance (Dixit & Ram, 1985).
287 
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2.4 Shrub Cover Estimation at 3m Spatial Resolution 288 

Random forests (Brieman, 2001) and the accompanying Gini Index criteria were used to 289 

evaluate the extent to which hyperspectral and LiDAR variables (Table 4) could predict shrub 290 

cover at pixel locations unsampled in the field. All three sites were analyzed collectively and the 291 

most important shrub cover predictor variables were identified (Salford Predictive Modeler 292 

Software Suite version 7, Salford Systems, San Diego, CA). The random forests method is 293 

nonparametric and based on an iterative machine learning algorithm that uses an ensemble of 294 

randomly generated regression trees. Random forests addresses limitations associated with 295 

overfitting and instability that can arise when using conventional regression tree-based 296 

approaches. Multiple bootstrap samples from the original training dataset and predictor variables 297 

are selected (with replacement) to generate a large number of non-linear trees; predictions for 298 

each tree are used in a voting process. Final prediction success is computed by averaging 299 

prediction success across each tree in the forest (Pal, 2005). The selection of variables at each 300 

node of the tree is based on a measurement of variable importance called the Gini index 301 

(Breiman et al., 1984). The Gini index represents a degree of node impurity, computed as the 302 

difference between out-of-bag error and the error from a permutated subset of data at each node. 303 

The random forests method includes a built-in robust validation that uses random subsets of both 304 

the data and the predictors bootstrapped several hundreds of times. The fit of random forests 305 

regression model are evaluated by r
2 
and the RMSE values from out-of-bag testing. The 306 

coefficient r
2
 is sometimes also referred by the term “pseudo R-squared” and is the percent 307 

variance explained computed as 1 - (mean square error)/(variance (target response)). 308 

Once a final random forests model is selected after iterative runs to remove the least 309 

important variables, a nearest neighbor imputation method is typically used to generate a 310 
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spatially explicit raster surface (Crookston & Finley, 2008). This estimated response surface 311 

contains predicted values for the variable of interest (e.g., shrub cover) at unsampled locations. 312 

Usually, imputation implies estimating the variable of interest from a set of k nearest neighbors 313 

within the dataset. When k = 1, the imputed value is assigned from the nearest neighbor, and 314 

when k > 1, other methods employing either a weighted distance or a random forests proximity 315 

matrix are used for finding nearest neighbors (Crookston & Finley, 2008). Instead of Euclidean 316 

distance, random forests imputation uses statistical distance, which can be computed using a 317 

proximity matrix or nonparametric methods.  318 

At the 3 m spatial resolution, HyMap and LiDAR predictor variables identified in Table 4 319 

were used to run the initial random forests model. A total of 2000 trees were generated for each 320 

run. The maximum number of variables considered per node was held equal to the square root of 321 

the number of variables for the run, as suggested by Breiman (2001). After the first run, the least 322 

important variable was removed and a new random forests model was built with the remaining 323 

variables. This process was repeated until error between iterations remained constant. The final 324 

model consisted of the smallest set of variables with the minimum out-of-bag error rate. This 325 

“back-ward elimination” approach to selecting variables is widely used in the literature (e.g. 326 

Dıaz-Uriarte & Alvarez de Andres, 2006; Falkowski et al., 2010; Hudak et al., 2008) and found 327 

to preserve important variables and eliminate redundant variables (Vauhkonen, 2010). The 328 

variables selected in random forests were used to generate a final wall-to-wall shrub cover 329 

predicted response surface for all three sites by implementing the R package yaImpute 330 

(Crookston et al., 2008; http://cran.us.r-project.org/; version R 2.12.2), which has a built-in 331 

random forests distance matrix (Hudak et al., 2008).  332 

Table 4. Variables used in random forests analysis. 333 
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Spectral variables LiDAR variables 

HyMap Reflectance bands (n =125) Hrange 

HyspIRI reflectance bands (n =211) Hmean 

NDVI HMAD 

Simple Ratio Index (SRI) HAAD 

Enhanved Vegetation Index (EVI) Hvar 

Red Edge NDVI Hstdev 

Red Edge Position (REP) Hskew 

Normalized Difference Lignin Index (NDLI) Hkurt 

Plant Senscence Reflectance Index (PSRI) HIQR 

Water Band Index (WBI) HCV 

Moisture Stress Index (MSI) HnthP 

Normalized Difference Infrared Index (NDII) HCNR 

GNDVI Htext 

NDVI705 Veg_Cov 

Sum Green Index Veg_Density 

Red: Green (R:G) Nper_g_ret 

Photochemical Reflectance Index (PRI) Nreturn
*
 

Vogelmann Index 1 (VOG1) Nv_return
*
 

Vogelmann Index 2 (VOG2) Ng_return
*
 

Carotenoid Reflectance Index 1 (CAR1)  

Carotenoid Reflectance Index 2 (CAR2)  

Anthocyanin Reflectance Index 1 (ARI1)  

Anthocyanin Reflectance Index 2 (ARI2)  
* While these variables do not have a physical basis for inclusion in the random forests analysis, they were retained 334 
but not selected for analysis nor used in subsequent mapping. 335 
 336 

2.5 HyspIRI-simulated Estimation of Shrub Cover and Height at 60 m Spatial Resolution 337 

At the 60 m spatial resolution, we performed a HyspIRI simulation to test the extent to which 338 

hyperspectral satellite observations could estimate shrub cover and vertical structure 339 

measurements (i.e., shrub height) across dryland landscapes. To simulate HyspIRI observations, 340 

HyMap imagery (472 – 2487 nm; ~ 13 – 206 nm full width half maximum (FWHM); 125 bands) 341 

were spectrally resampled to match higher spectral resolution HyspIRI channels (470 – 2477 nm; 342 

~ 9 - 12 nm FWHM; 211 bands) using Gaussian models defined by instrument FWHM values. A 343 

comparison of the average reflectance spectra between Hymap and HyspIRI-simulated imagery 344 

is shown in Fig. 4. After spectral resampling, the HyspIRI imagery were spatially averaged from 345 
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a 3 m pixel resolution to a 60 m pixel resolution. To evaluate the simulations, we related 346 

HyspIRI-simulated reflectance bands and vegetation indices on a pixel basis to four different 347 

LiDAR variables averaged from 3 m pixel resolution to 60 m pixel resolution: (1) ratio of 348 

vegetation returns to total returns (hereafter referred to as “LiDAR ratio of returns”), (2) LiDAR-349 

only shrub cover derived from random forests estimates in Section 2.4, (3) mean vegetation 350 

height, and (4) maximum vegetation height.  351 

LiDAR ratio of returns has been used as a surrogate for true vegetation cover in forested 352 

ecosystems (e.g. Smith et al., 2009); however, in ecosystems dominated with low-stature shrubs, 353 

where only a few LiDAR returns are reflected from vegetation, this ratio may not be a robust 354 

metric for estimating vegetation cover. Therefore, we also considered the shrub cover derived 355 

from LiDAR-only variables in random forests. Using the combined LiDAR and HyMap shrub 356 

cover product would have biased our results because the surrogate validation dataset and the 357 

HyspIRI-simulated dataset contain the same spectral information. Height measurements 358 

collected in the field for this study did not support validation of LiDAR height variables. 359 

Consequently, LiDAR mean and maximum vegetation height variables were used as surrogate 360 

validation datasets. A series of related studies on sagebrush height estimation using discrete 361 

return airborne LiDAR found moderate to strong agreement between these variables (r
2 
from 362 

0.58 to 0.86) and the height of individual shrubs measured in the field (Streutker & Glenn, 2006, 363 

Mitchell et al., 2011). These sagebrush height studies consistently noted height underestimation 364 

on the order of 30 cm or approximately 30% of an average shrub, with limited error introduced 365 

by slopes less than 15% (Glenn et al., 2011, Spaete et al., 2011).  366 

To perform the analysis, a sample of 200 training locations (60 m pixels) was randomly 367 

selected in each study area from the simulated HyspIRI imagery. For each selected 60 m pixel, 368 
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reflectance values and a series of vegetation indices were related to LiDAR-derived shrub cover 369 

and height estimates. A total of 232 predictor variables were used for the initial random forests 370 

run: individual HyspIRI-simulated bands (n = 211) and vegetation indices (n =21). The random 371 

forests approach was similar to that described in section 2.5. The model accuracies in terms of 372 

out-of-bag estimates of r
2 

and RMSE are reported. In addition, a separate set of test data 373 

consisting of 100 samples from each of the three study areas were randomly selected and used to 374 

test the strength of the model. The random forests model with the best subset of variables was 375 

then used to create a wall-to-wall predicted surface of shrub cover map at 60 m resolution.  376 

 377 

378 

  379 

Figure 4: The average reflectance spectra of HyspIRI-simulated (60 m) and Hymap (3 m) grids at the 380 

three study sites: (a) INL (b) Hollister and (c) RCEW. 381 

3. Results and Discussion 382 

a) b) 

c) 
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3.1. Field Data 383 

Shrub cover among all the sites ranged up to 45%, except for the INL site which had one plot 384 

with 52% shrub cover (Table 5). However, there were 9 sample plots with less than 10% cover at 385 

INL, compared to only 1 and 3 plots at RCEW and Hollister respectively. The RCEW plots had 386 

the highest median shrub cover (31%), followed by Hollister (21%) and INL (17%). Average 387 

shrub vegetation heights ranged from 8 to 71 cm across the sites.  388 

 389 

Table 5. Summary of shrub cover and height measurements collected at the three study sites in 390 

Hollister, INL and RCEW.  391 

 Hollister (n = 35) INL (n = 20) RCEW (n = 23) 

Median 

± SE
†
 

Min Max Mean ± 

SE 

Min Max Mean ± 

SE 

Min Max 

Shrub 

cover (%) 

21.5± 1.5 1.7 41.3 17.2± 3.3 0.0 51.6 30.6± 2.0 9.9 44.6 

Shrub 

height (cm) 

42.1± 1.7 25.1 59.6 50.4± 3.9 8.2 70.8 24.0± 5.8‡
 20.0 63.1 

†SE = Standard error of mean; ‡Vegetation heights were only recorded for 8 sample plots 392 

 393 

3.2 Shrub Cover Estimation at 3 m Spatial Resolution  394 

At the 3 m spatial resolution, the random forests model with both LiDAR variables and HyMap 395 

variables combined performed better than the model run with only LiDAR variables (r
2 

of 0.58 396 

and 0.49, respectively; Table 6). A total of 5 to 6 predictor variables were selected in the final 397 

random forests models for shrub cover based on minimum error and model parsimony. Among 398 

the LiDAR variables, median absolute deviation from the mean height (HMAD), interquartile range 399 

of height of all vegetation returns (HIQR), vegetation cover (Veg_Cov), texture of the height of 400 
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the vegetation returns (Htext), vegetation density (Veg_Density), and the 5
th

 percentile of 401 

vegetation returns (H5thP) were ranked as the most important variables. When the HyMap and 402 

LiDAR data were combined, the HyMap variables of importance included the Anthocyanin 403 

Reflectance Index 2 (ARI2) and the red to green ratio; and the LiDAR variables included HIQR, 404 

HMAD, and Veg_Cov.  405 

Shrub cover maps (Fig. 5 a-c) , which were generated from the LiDAR-only random forests 406 

model (Table 6), and used as a surrogate validation dataset for HyspIRI-simulated shrub cover 407 

(Table 7), had a strong tendency to overestimate field-measured shrub cover and by as much as 408 

27.6% (but generally within 10.4%) for all three sites combined (Fig. 5 d). Overestimation results 409 

are likely due our inability to completely isolate shrub cover estimates from the influence of 410 

grass. The use of a single height threshold (0.15 m) for calculating Veg_Cov and Veg_Density 411 

variables with the point cloud data (Table 6) minimizes, but does not eliminate all grasses. The 412 

extent to which the threshold minimizes grass influence can vary across sites. For example, the 413 

threshold is less effective at RCEW, where taller grasses occurred more frequently (Fig. 3). Also, 414 

other LiDAR variables calculated from the point cloud data, such as HMAD, HIQR, and H5thP, did not 415 

use the 0.15 m threshold and are even more likely to include grasses. Finally, the LiDAR 416 

calculations were performed using returns within a 3 m x 3 m area rather than within the actual 417 

ground reference plot boundaries, which can also influence cover estimation results. 418 

  419 
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Table 6. Results of shrub cover analysis with random forests using LiDAR only and both LiDAR 420 

and HyMap variables.  421 

Source of predictor 

variables 

Predictor variables 

selected
†
 

r2  RMSE 

LiDAR-only  HMAD 

HIQR 

Veg_Cov 

Htext 

Veg_Density 

H5thP 

0.49 8.19% 

HyMap + LiDAR  HIQR 

HMAD 

ARI2 

Veg_Cov 

R:G 

0.58 7.35% 

† 
The order of the variables, ranking from most important top to bottom, indicates the variable importance as 422 

selected using Gini Index in random forests.  423 
  

424 



Page 26 of 49  

 
425 

Figure 5. Imputed shrub cover (3 m resolution) using LiDAR metrics at the three study sites: (a) 426 

Hollister (b) RCEW and (c) INL. The actual vs imputed shrub cover relationship is shown in 427 

(d). 428 

  429 
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3.3 HyspIRI –simulated Estimation of Shrub Cover and Height at 60 m Spatial Resolution 430 

HyspIRI-simulated variables estimated shrub cover and height (using the LiDAR-derived 431 

surrogate validation sets) resulted in r
2
 values that ranged from 0.63 to 0.71 (Table 7; Fig. 6). For 432 

shrub cover, HyspIRI estimates were slightly more related to the cover version derived from 433 

LiDAR variables using random forests (“imputed”) than to the LiDAR ratio of returns version, 434 

with the former producing almost half the error compared to the latter (RMSE of 4.94% and 435 

8.72% respectively; Table 7). As expected for low stature vegetation, where there are only a few 436 

LiDAR returns reflected from the top of the canopy, the mean LiDAR height had lower error and 437 

higher correlation coefficient compared to the maximum LiDAR height (Table 7).  438 

Among HyspIRI-simulated variables used to estimate shrub cover and height, the water band 439 

index (WBI; Table 3) was among the top five most important variables for both shrub cover 440 

estimated from LiDAR variables using random forests and shrub cover estimated using the 441 

LiDAR ratio of returns (Table 7). The WBI is associated with a strong water absorption feature 442 

around 900 nm and has been found to correlate well with greenness in semiarid shrubland 443 

ecosystems (Claudio et al., 2006). The red edge normalized difference vegetation (RENDVI or 444 

NDVI705; Table 3) was the variable most relatable to shrub cover as calculated from the LiDAR 445 

ratio of returns. The index was designed for hyperspectral sensors and is sensitive to small 446 

changes in the vegetation red edge and therefore canopy foliage and senescence (Geitelson & 447 

Merzlyak, 1994; Sims & Gamon, 2002). The Vogelmann red edge indices (VOG1 and VOG2; 448 

Table 3) from the HyspIRI simulation were strong predictors of shrub cover estimated from 449 

LiDAR variables using random forests and of mean and maximum LiDAR shrub heights. These 450 

indices are also narrowband reflectance measurements and sensitive to chlorophyll content, leaf 451 

area, and water content (Vogelmann, 1993). Overall, HyspIRI-simulated variables of greatest 452 
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importance were related to the red edge, water content and anthocyanins. A visual comparison of 453 

shrub cover maps derived from LiDAR variables using random forests to shrub cover maps 454 

derived from HyspIRI variables using random forests indicate general agreement, with some 455 

differences in distribution patterns likely attributable to resolution. The LiDAR cover version 456 

was originally estimated at 3 m and then averaged to 60 m while the HyspIRI cover was 457 

estimated directly at 60 m (Fig. 7). There was a somewhat jagged artifact to the LiDAR-derived 458 

shrub cover distributions; the range of the HyspIRI-simulated shrub cover values was smaller 459 

than that of the LiDAR-derived shrub cover; and there were noticeably greater peaks in the 460 

central tendencies of the shrub cover maps derived from HyspIRI-simulated variables. These 461 

differences were consistent across all three sites (Fig. 7).  462 

  463 
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Table 7. Results of using HyspIRI-simulated variables (n=200 samples in each of the three study 464 

areas and 232 bands) to estimate shrub cover and height (using LiDAR-derived variables as 465 

surrogate validation datasets).  Analysis was performed using random forests and LiDAR 466 

variables were spatially coarsened from 3 m to 60 m pixels. 467 

Predicted Variable Predictors
† r2‡ RMSE 

LiDAR ratio of returns 

(vegetation returns : total returns) 

RENDVI (100) 

REPI (74.58) 

WBI (58.38) 

MSI (32.94) 

0.63 8.72% 

LiDAR-only shrub cover from 

random forests 

WBI (100) 

VOG2 (40.03) 

PSRI (39.96) 

NDLI (36.95) 

NDII (18.65) 

0.65 4.94% 

LiDAR vegetation height (mean) VOG1 (100) 

ARI2 (19.75) 

RENDVI (15.60) 

REPI (12.05) 

0.71 0.12 cm 

LiDAR vegetation height (max) VOG2 (100) 

VOG1 (58.74) 

ARI2 (22.69) 

0.66 0.40 cm 

† 
The order of the variables indicates the variable importance as selected using Gini Index in random forests. The 468 

variables at the top of the list are more important than those down the order. Gini index scores are indicated in 469 

parentheses.  470 
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 471 

Figure 6. Actual vs predicted plots (n=600) from random forests regression of LiDAR-based 472 

shrub cover and height (aggregated to spatial resolution of 60m) with HyspIRI-simulated 473 

variables using n=200 samples in each of the three study areas and 232 bands.474 
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 475 

 476 

Figure 7. Imputed shrub cover at 60 m resolution in (1) RCEW, (2) INL, and (3) Hollister study areas. Shrub cover imputed using 477 

LiDAR only variables (using the random forests model in Table 6) (a) is compared to shrub cover imputed using HyspIRI-478 

simulated bands (using the random forests model in Table 7) (b). Graphs show shrub cover distribution under scenarios (a) and (b) 479 

in the three study sites. 480 
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4. Discussion and Conclusions 481 

A number of study limitations should be brought to the readers’ attention before discussing 482 

the relative contributions of HyMap and LiDAR variables to predicting shrub cover at high 483 

resolution and the projected ability of HyspIRI to estimate shrub cover and height in dryland 484 

systems. One limitation is the time lag between field collection dates and HyMap and LiDAR 485 

acquisitions (see Table 1). In semi-arid environments, where shrubs grow slower due to low leaf 486 

area index and photosynthesis levels (Zeng et al., 2008), a one year gap between field and remote 487 

sensing collections may not have affected the structure and composition of the vegetation 488 

significantly. However, the four-year gap between LiDAR acquisition and field data collection at 489 

the RCEW collection site may have affected some structural metrics, such as cover. Between 490 

2007 and 2011, the RCEW site received higher precipitation in the later years near the time field 491 

data collection occurred, which would have accelerated plant growth and exacerbated differences 492 

in cover measurement (precipitation: 235.1 mm (2007), 232.5 mm (2008), 323.5 mm (2009), 493 

375.3 mm (2010), and 300.8 (2011) (USDA ARS, 2014). Another limitation is error introduced 494 

because of inherent discrepancies between field measurements and higher-precision LiDAR 495 

sampling and confusion between shrub and grass. In addition, we used a Gaussian model rather 496 

than spline interpolation to spectrally resample from low resolution HyMap data to higher 497 

resolution HyspIRI-simulated data. Another consideration is cross-track illumination error 498 

associated with HyMap flightline mosaics – a factor that would theoretically have less of an 499 

influence of HyspIRI swaths. Finally, at the HyspIRI-simulated 60 m spatial resolution, we used 500 

airborne LiDAR-derived cover estimates as a surrogate validation dataset despite recognized 501 

limitations associated with LiDAR discrimination of short-stature vegetation. Because only one 502 

source of hyperspectral data was available, the imagery could not be used for both validation (at 503 
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3 m) and testing (at 60 m).  504 

At fine scales, this study demonstrates the potential for employing a single model consisting 505 

of canopy metrics and vegetation cover from LiDAR, complemented with airborne hyperspectral 506 

vegetation indices, to accurately estimate shrub cover. Our approach to couple LiDAR and 507 

spectral measurements is based on previous work (Leutner et al., 2012; Mundt et al., 2006) and 508 

demonstrates that shrub cover can be predicted using a random forests approach that includes the 509 

identification of important predictor variables. Among the selected important LiDAR variables, 510 

HMAD, HIQR and Veg_Cov (Table 2) were ranked higher in both the LiDAR-only and the HyMap 511 

/ LiDAR combined models. HMAD is a robust metric that captures the variability of height. 512 

Similarly, HIQR captures the variability in the mid-region of the shrub where the bulk of LiDAR 513 

points are usually distributed. Another result to note is that Veg_Cov was ranked lower in 514 

importance than both HMAD and HIQR variables (Table 6). While Veg_Cov has been used as a 515 

surrogate for vegetation cover in forested ecosystems (e.g. Smith et al., 2009), the metric may 516 

not predict vegetation cover robustly in shrub-dominated ecosystems. The limited number of 517 

LiDAR returns from vegetation in shrub-dominated ecosystems likely results in an 518 

underestimation of cover calculated by Veg_Cov.  519 

We found that our shrub cover predictive power increased at the 3 m spatial resolutiSon with 520 

the inclusion of both ARI2 and the red to green ratio (Table 3). The red to green ratio is a 521 

broadband vegetation index, which suggests that combing airborne LiDAR with information 522 

from multispectral sensors may also improve shrub cover estimation results. The selection of 523 

ARI2 and the red to green ratio highlights the importance of using vegetation indices related to 524 

the physiological status of shrubs to estimate cover. In addition, including spectral information 525 

decreased the RMSE. While this decrease was roughly 1% (Table 6), the contribution of spectral 526 
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information may be significant when considering that shrub cover in our study area (median of 527 

17.2-30.6% cover) and many areas in the Great Basin and other dryland systems is quite low. In 528 

addition, the photosynthetically active portion of many shrubs in the Great Basin (e.g. sagebrush) 529 

is small in comparison to the woody component (e.g. Olsoy et al., 2014). Due to the large 530 

spectral contribution of the woody component, narrow band indices are more likely to support 531 

retrieval of photosynthetic functional characteristics. Previous studies have also found narrow 532 

band indices helpful in characterizing dryland plants (e.g. Black & Guo, 2008; Lewis, 2002). 533 

Interestingly, vegetation indices associated with cellulose and lignin content, such as PSRI and 534 

NDII were not identified as important predictors of shrub cover. It is possible that the role of 535 

such indices were relatively minor compared to the larger contributions of LiDAR-derived 536 

variables. It should also be noted that the role of vegetation indices may change seasonally. For 537 

example, it may be easier to discriminate shrub woody biomass in the spring because cellulose 538 

and lignin indices would not be as sensitive to grasses greening up in comparison to senesced 539 

grass and litter in later summer and fall.  540 

When LiDAR-only shrub cover was estimated for each site independently, individual sites 541 

had an r
2
 ranging from 0.41 to 0.57. When all three sites were analyzed collectively, LiDAR- 542 

shrub cover estimation only had an r
2
 value of 0.49. When HyMap / LiDAR shrub cover was 543 

estimated for each site independently, individual sites had an r
2
 ranging from 0.52 to 0.65. By 544 

comparison, the HyMap / LiDAR cover estimation had an r
2
 of 0.58 when all three sites were 545 

analyzed collectively. In all independent and collective site scenarios, combining the LiDAR 546 

variables with spectral variables improved correlation coefficients and reduced RMSE on the 547 

order of 1%. Analyzing the sites collectively resulted in correlation coefficients and RMSE 548 

values that were roughly an average of how each site performed independently. The RMSE 549 
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behavior is difficult to predict if additional study sites were included in the analyses; however, it 550 

may prove helpful to developing a correction factor to account for consistent LiDAR shrub 551 

cover overestimation. It may also be that data fusion of LiDAR and spectral observations is key 552 

to constraining error when scaling from site-specific observations to a region in this open-553 

canopy environment. Overall, these findings suggest that high quality field and airborne remote 554 

sensing datasets are necessary to estimate shrub cover at fine resolutions in the low-height, open 555 

canopy rangelands of the Great Basin.  556 

Using a range of in situ data from the Great Basin, this study also demonstrated the potential 557 

of HyspIRI data to robustly estimate shrub cover and height. Studies such as the one presented 558 

herein help evaluate potential applications and vegetation products in anticipation of HyspIRI and 559 

other future space-borne imaging spectrometer missions. In this study, we were particularly 560 

interested in the capabilities of a sensor such as HyspIRI, with high spectral resolution and 561 

relatively coarse spatial resolution. Other hyperspectral and multispectral satellite missions such 562 

as Hyperion and Landsat 8 have unique challenges characterizing sparse, low-height vegetation 563 

in dryland systems (Jafari & Lewis, 2012). At the coarse scale, the strong relationship between 564 

mean vegetation height and HyspIRI-simulated indices related to red edge and anthocyanins is 565 

promising in terms of future satellite missions suitable for characterizing the effect of changes in 566 

ecosystem composition and function on resource management and 3-dimensional vegetation 567 

structure. Moreover, we found that HyspIRI-simulated variables related to the red edge, water 568 

content and anthocyanins, had high predictive power for both shrub cover and height. The shrub 569 

cover estimates provided by the HyspIRI-simulated variables are robust and the two methods to 570 

develop a spatially explicit dependent variable of shrub cover (imputation and point cloud data) 571 

provide a potential bounding range of error for HyspIRI (RMSE of 5 to 9%). In addition, 572 
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predictions of height indicate that HyspIRI has the potential to also provide vertical structural 573 

metrics. The shrub cover estimated by the HyspIRI simulations did not capture the distribution of 574 

lower and upper shrub cover percentiles (minimum cover: 0 to 9%, maximum cover: 41.3 to 51.6 575 

%; Table 5), which may be attributed to the effect of the coarser spatial resolution. The results 576 

show that while spectral range and resolution of HyspIRI are sufficient to capture the major range 577 

of shrub cover distribution, the coarser spatial resolution may become a key limitation to 578 

accurately recording the lower and upper ranges of shrub cover distribution (Figure 7). Methods 579 

for leveraging a greater range of spectral information should be investigated and additional 580 

methods and data should be used to create HypsIRI-simulated data for testing (NASA, 2013).  581 

To improve upon this study at the fine scale, high fidelity hyperspectral and a narrower pulse 582 

width LiDAR (smaller beam diameter and shorter pulse length) will be needed to resolve low-583 

height sparse vegetation. In addition, small footprint full-waveform LiDAR has not been 584 

demonstrated in dryland systems, mostly due to limited availability. While airborne LiDAR 585 

provides detailed structural metrics of vegetation, its large scale application to ecosystem 586 

analysis and modeling is limited by the lack of available data, and to some extent the variability 587 

in data quality and standards in which airborne LiDAR are collected. The challenges associated 588 

with availability may be mitigated by utilizing airborne LiDAR as a sampling tool, similar to in 589 

situ data collection (Wulder et al., 2012).  590 

At the coarse scale, HyspIRI may be well complemented with structural measurements from 591 

satellite-based laser altimetry. While NASA’s ICESat full-waveform GLAS instrument 592 

confounds energy peaks for rangeland vegetation and ground, resulting in a ground return pulse 593 

to widen from low vegetation (Duong et al., 2009; Hug et al., 2004), new potential may arise in 594 

the upcoming ICESat-2 mission. The photon counting instrument of ATLAS on ICESat-2 and 595 
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operating with a green wavelength may not have the capacity to resolve low-height vegetation 596 

across fine scales, yet several mission characteristics have the potential to improve regional scale 597 

estimates of structural metrics (Yua et al., 2010). Current testing in shrub ecosystems using 598 

photon counting airborne MABEL (Multiple Altimeter Beam Experimental Lidar) data is 599 

underway.  600 

Complimentary satellite-based high fidelity spectral and laser altimetry measurements will 601 

also enable improved physiological monitoring of shrublands. For example, linking estimates of 602 

leaf chemistry (e.g. N estimates in sagebrush, Mitchell et al., 2012) with shrub structural 603 

measurements will allow parameterization of shrublands in ecosystem models such as the 604 

Ecosystem Demography model (Antonarakis et al., 2014; Moorcroft et al., 2001). Synthesizing 605 

spatial predictions of vegetation parameters with remote sensing is critical for initialing models to 606 

estimate ecosystem fluxes. In sum, our results demonstrate the merit of coupling spectral and 607 

laser altimetry measurements for dryland shrub characterization. To leverage these synergistic 608 

data types, new methods are needed to optimize combination methods, address uncertainties 609 

associated with sensitivities to sampling size, understand relative tradeoffs and redundancies 610 

between sensors, and leverage the full range of hyperspectral information. 611 
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